
Swarm Move With Splines - Manual

Alexandru Dumbrava

December 8, 2024



Contents

1 Introduction 2

2 Dependencies 3

3 Setup 5

4 Script Fields 7

5 Tuning 9

1



Chapter 1

Introduction

Swarm Move With Splines allows you to make a swarm or large group of
game objects move along a spline. Spline Animate is the Unity provided
solution for this but it does not allow for interaction with the physics engine
and it forces game objects to be positioned exactly along the spline.

What if you want something a little more flexible? Maybe you want 100
chickens or birds or fish or soldiers following a predetermined spline path
and you want them all to collide with each other. This is the problem I
encountered before developing this asset and it is the problem this asset
solves!

Swarm Move With Splines allows for single traversal, looping traversal
and boomerang traversal all while allowing the physics engine to handle col-
lisions and all the regular physics goodies through the usual rigidbody and
collider components. It also provides a built-in PID controller that allows
you to precisely tune the behaviour of your game objects.

If you’ve been frustrated at Spline Animate, I hope this asset package
helps solve your frustrations!

2



Chapter 2

Dependencies

There is only one dependency for this package. That is the Spline package
from Unity. To add the Spline package, navigate to Window and then select
Package Manager.

3



After the Package Manager is open, click on Unity registry and then
search for Splines. Click the install button to add it to your project.

4



Chapter 3

Setup

The main component in this package is the Swarm Move With Splines script.
You can find this script file at the root level of the package. This script allows
full customization over the spline following behaviour of any game objects it
is attached to.

Add this script to any game object you want to follow a custom spline
path. If you have a swarm of objects either add it to each object in the
swarm or add it to a prefab and then instantiate the swarm at runtime using
your own C# code.

NOTE: Make sure your game object has a rigidbody attached to it. The
script adds force using the rigidbody to ensure it moves properly.

You’re halfway done! The other part of the setup is creating your Spline
container. Right click in the hierarchy and go to Spline. Then select the
spline you want to create. There are a few standard splines or you can create
your own custom spline using the Draw Splines Tool...

5



These tools are part of Unity’s package so refer to their documentation if
you require additional assistance with spline creation. Once you’ve created
the spline container, you will need to add it to the Spline Container field in
the script component. If the script is on an instantiated object (an object in
the hierarchy), you can just drag and drop the Spline Container in. If you
instead have a prefab that you instantiate through your own C# code, you
will need to pass in the path programmatically yourself. There is a Spawn.cs
script in the example subfolder that shows you how to handle prefabs.

And that’s it for setup! The rest of the script contains fields for cus-
tomization and tuning. We’ll go over that soon.

6



Chapter 4

Script Fields

The script has the following inspector editor

Spline Container - this field holds a reference to your spline. Set it
either through code when instantiating or set it on an object that is present
in the hierarchy.

Traversal Duration - this field sets how long it takes to move along the
spline in seconds. This is a float field so you can use fractions of a second.
Just keep in mind that the physics simulation only runs a set amount of
times per second. For boomerang loop mode, multiply this value by two to
get the full duration for going from start to finish and back to start again.

Play / Stop / Reset - these buttons are here for testing purposes.
Unfortunately, they do not work with multiple objects selected.

7



Loop Mode - There are three loop modes:

• None - Traverse the spline from start to finish once.

• Loop - Traverse the spline from start to finish and repeat once you
finish the traversal. This is most useful for closed splines.

• Boomerang - Traverse the spline from start to finish and then go back
to start doubling the traversal duration. Once back at the start, repeat.
This is useful for swarms that need to go back and forth repetitively.

Play On Start - check this to start following the spline as soon as the
game object is instantiated.

PID - PID controller that has your three P, I, and D variables. The
values for these variables are covered in detail in the next chapter (Tuning).

Ignore - Gives you the option to ignore one specific global access when
following the spline. For example, if your spline is drawn above ground and
you don’t want your game objects to fly, you can ignore Y and they will stay
on the ground.

8



Chapter 5

Tuning

The main power of this script comes from the built in PID controller. If
you’ve never encountered this term it’s a technology that allows systems to
reach a target signal. The usual example given in literature is a thermostat.
If the temperature gets too low, the system needs to kick in and heat up the
house. If it gets too high, it needs to shut off and allow the house too cool.
Another example is the cruise control on your car.

PID controllers have three variables you can play with. P, I, and D. The
first and simplest is P for Proportional Gain. This is a direct measurement of
how far off the system is from the desired signal. In our case it’s the difference
between the game object’s current position and the position it should be at
along the spline. When finding your ideal values start with P first as that
tends to have the greatest impact.

As you get your P close to where it needs to be for your use case, you will
usually notice there is an oscillation. This means that the game object swings
from one side of the spline to the other. To reduce the oscillation increase
your D value. D stands for Derivative Gain and its influence increases along
with increases in the error’s rate of change. All you really need to know is
that this reduces the oscillation caused by P.

In the middle we have I. This stands for Integral Gain. The longer an
error exists in the system, the higher influence I will have. This comes in
handy when you have other forces (such as gravity) acting on your game
objects. If you have a rocketship trying to reach a target and it’s constantly
being pulled down by gravity, a PID controller without I will never reach its
target. It will find an equilibrium just below the target. To fix this make
sure your I is greater than 0.

9



Unfortunately, PID tuning is more of an art than a science. Each use
case is different and the values that satisfy you will be different. In building
the sample scene I started out with P then D and finally some I. P had
the greatest influence on getting the swarm to follow the spline. I would
recommend keeping your values above zero, however, there are times when a
negative value is useful. Just keep playing around with it until you’re happy.
And remember to copy the values before exiting Play Test mode!

10


