The Definitive Guide to Exploring File
Formats

Mr. Mouse and WATTO (2004)

November 28, 2024

Introduction

e big file archives reduce file count and allow for streaming of data

e every developer creates their own archive format and even change
formats between games within the same company

e GRAs - Game Resource Archives
— An archive is a file that stores many smaller individual data files
within it
— A GRA is an archive specific to a game that contains resources
the game uses
e GRAFs - Game Resource Archive Formats
— GRAF describes the way the archive is constructed and how and
where the files are found within the archive

— Formats are usually defined by the requirements of the game
engine but will be structured to allow for quick access

* For example, resources for one specific level can be grouped
together

— Archives must store any type of file in the same ”universal”
manner

— Archives must tell the engine what files are contained within the
archive and must allow for a consistent accessing method

Tools

e Hex Workshop is highly recommended (but only available on Windows)
— Allows for color mapping, bookmarks, and GoTo functionality
e GRAIS - GRA Id String or "magic”

e Some GRAFS’ offsets may not count the 4 bytes for the archive magic
(relative offsets). Others might (absolute offsets).

Terms, Definitions, and Data Structures

Files are a series of bytes stored one after another that can be
interpreted to mean something and are stored on disk

Bits-0 /1

Bytes - 0 - 255 — 0x00 - OxFF

16 bit numbers - words / short - 0 - 65535

32 bit numbers - dword / long - 0 - 4.2 billion

64 bit numbers - qwords / long / doubles - commonly used for floating
point values

Strings - typically a group of 8 bit characters that are readable in
English

— Be careful as some strings may be in foreign languages or obscure
unicode formats and may seem unintelligible but are still strings

Hex numbering - 4 bits - 2¢ = 16 values - 0-F

GRAs rarely used signed numbers. They use offsets greater than zero
and file sizes greater than zero. So it makes no sense to have negative
values represented.

— If numbers are negative, the field typically uses the highest bit to
signify it is negative

*x Note: When numbers are represented as such there will be a
-0 and a +0

Big-Endian - the big bit is at the end (reading left ot right)

— Little-Endian - the little bit is at the end (normal)
— Assume Little-Endian values by default

Offsets start at 0

Archive Patterns

Directory Archives

Most common archive in use

A Directory is present that contains a property list of all files in the
archive including file name, file size, and file offset information

— The presence of this directory / rolodex / table describing the files
is the key characteristic of this archive type

A separate File Data section contains the file data

If the directory is not stored at the head, there will be an offset (usually
4 bytes) to where it is stored

If it’s not at the head, it will be at the tail.

The layout is as follows:

Archive Header
4 - GRAIS (String)
4 - Number of Files
Directory
File Entry 1
4 - File Offset
4 - File Size
X - Filename
File Entry 2
4 - File Offset
4 - File Size
X - Filename

File Entry n

4 - File Offset

4 - File Size

X - Filename
File Data

File Data 1

File Data 2

File Data n

Tree Archives

Tree directories have 3 sections, Directory Entries, File Entries, and
File Data sections

The Directory Entries section will have a series of entries pointing to
other directory entries. These offsets can either be another directory
or the start of the file list for that directory.

It’s not quite clear how this would work with a directory that contains
other directories as well as files.

This method allows for complex directory trees to be stored in a small
space

— This leads to slightly smaller archives but increases read time for
the archive

This type of archive is rarely found in the wild.

An example layout is:

\data\sounds\sndl.wav
\data\sounds\snd2.wav
\data\images\temp\picl.bmp

The following graphic shows the structure of the archive that contains these 3
files.

Archive Header
4 - GRAIS (String) HEAD
4 - Number of Directories at Root 1
4 - Number of Files 3
Directory Entries
Directory Entry 1
X - Filename data
4 - Subdirectory Offset offset to Directory Entry 2
4 - Number of Files in Directory 0
4 - Number of Subdirectories in Directory 2
Directory Entry 2
X - Filename sounds
4 - Subdirectory Offset offset to File Entry 1
4 - Number of Files in Directory 2
4 - Number of Subdirectories in Directory 0
Directory Entry 3
X - Filename images
4 - Subdirectory Offset offset to Directory Entry 4
4 - Number of Files in Directory 0
4 - Number of Subdirectories in Directory 1
Directory Entry 4
X - Filename temp
4 - Subdirectory Offset offset to File Entry 3
4 - Number of Files in Directory 1
4 - Number of Subdirectories in Directory 0
File Entries
File Entry 1
4 - File Offset offset to File Data 1
4 - File Size size of File Data 1
X - Filename sndl.wav
File Entry 2
4 - File Offset offset to File Data 2
4 - File Size size of File Data 2
X - Filename snd2.wav
File Entry 3
4 - File Offset offset to File Data 3
4 - File Size size of File Data 3
X - Filename pic1.bmp
File Data

File Data 1
File Data 2
File Data 3

Chunked Archives

Simplest type of archive

Files are stored sequentially with all data in a file header

Typically read by reading all the metadata first and then going back

to read the file data

Based on EA IFF85 standard

— Used for many files including WAV and AVI

Archive Header
4 - GRAIS (String)
4 - Archive Size
File Header 1
4 - File Type (String)
4 - File Size
File Data 1
File Header 2
4 - File Type (String)
4 - File Size
File Data 2

File Header n

4 - File Type (String)
4 - File Size

File Data n

Split Chunk Archives

e Very similar to chunked archives except files are segmented into chunks
that are the same size to allow for efficient buffer while reading the file

Archive Header
4 - GRAIS (String)
4 - Archive Size
File Header 1
4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size
File Chunk 1
File Chunk 2

File Chunk n
File Header 2
4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size

File Chunk 1

File Chunk 2

File Chunk n

File Header n
4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size

File Chunk 1

File Chunk 2

File Chunk n

External Directory Archives

e Very similar to directory archive except file data section is stored in a
different file

e Files will have the same name but a different extensions (.dir / .arc)

Checking Your Results

Common Types of Fields

e These fields are very common:
— File size, File Offset, Number of Files, Magic (GRAIS)
e These fields occur in some archives but have a chance of not appearing:

— First File Offset, Archive Name, Filename Offset, Filename Di-
rectory Offset, Total File Data Size, Total Directory Size, Archive
Size, Number of Directories, Directory Offset, File Extension /
Type, File ID, Archive Version, Filename Length, Decompressed
File Size, Checksum, Timestamp

Validating Your Fields

Always check to see if the field is what you think it is

Make sure to try with multiple instances of that field (or through
multiple archives)

Ex: One way to validate file data offset is to go to that offset and see
if you recognize the magic at that location. Some common headers:

— RIFF - wav

— BM - bitmap

— GIF - gif

— JFIF - jpg

If you think your files are compressed and you’ve found the file size
field, try looking for a decompressed file size field for each entry

— Look for a field that’s always slighltly larger than the file size field.

Another tip is if your archive contains a directory, try and find a
repeatable pattern and get the number of file entries in that directory.
This number will usually be somewhere at the start of the archive. Also
you can try to see if it works for multiple archives following the same

GRAF.

Padding

It is common to encounter padding in an archive. This padding can
occur at the end of file data or file entries within a directory.

Typically padding is added to get to multiples of 4 bytes. This is done
for buffering reasons.

Some archives pad their file data to multiples of 2048 bytes.

File name Patterns

File names tell the reader how to open and edit the files
Many archives don’t store file names as they take up a lot of space
Some filenames are stored in a separate directory

— Typically, the file entries will have an offset to the file name

File names are usually stored in the same order the files appear in the
archive

Some archives will have a file name length field just before the file name

— These sizes will usually include the null terminating byte as part
of the length

Some archives will use the space character (0x20) instead of the null
byte

10

Encryption and Compression

The Basics

Encryption to protect resources
Compression to reduce archive size

Use a disassembler to find decryptiong and decompression algorithms
used by the actual engine

Encryption relies on bitwise operations:

— AND, OR, XOR, NOT, SHL (shift-left), SHR

— These can be used for fast division / multiplication, color invert-
ing, and switching of bits on and off

An example of the usefulness of bitwise operations is in graphics cards.
Assume you have a resolution of 640x480 pixels but only have screen
memory of 4x 320x200 bytes. We cannot encode all the pixels in the
screen memory (we would miss the last 80 pixel columns). What we
can do is reduce the color range of each pixel (to 0-15 swatch based
coloring) and store two pixels per byte. Odd pixels (1-indexed) would
be stored in the lower nibble and even pixels in the higher nibble. To
do this we would need to SHL the values of the even pixels and OR
them with the values of the odd pixels.

XOR is very common in encryption as it’s reversable: a XOR b XOR
b=a

11

Encryption

Encryption techniques, though numerous, are purely logical in nature
First you must be certain that the file you are looking at is encrypted

Get more references. Find more files / archives that are encrypted and
compare them to see if you can find patterns

Use a disassembler to find resource name strings. These can be the
decrypted and expected file name and can give you a target to reach
while working out the decryption algorithm.

12

e Example: Painkiller Encryption

— scripts.pak contained file name strings such as:

cLHLCB.P[\XIM.m,)
IOOO\A.[WVSJI/4j/&#
iJRRYD.IR*&1/&'(a8=<

Or, in hexadecimals:

63 4C 48 4C 43 42 1C 50 5B 5C 58 49 4D 2E 6D 2C 29 20

6C 4F 4F 4F 5C 41 1B 5B 57 56 53 4A 2F 34 6A 2F 26 23

69 4A 52 52 59 44 16 4952 5C 2A 26 31 2F 26 27 28 61 38 3D 3C

— We know these are strings that are file names. This is a good
starting piont

— This archive also had a 4 byte entry before each file name listing
the length of the string. We can therefore assume the characters
are encrypted in place and their positions match those in the
original string.

— We also know that file names usually have the structure
directory\directory\filename.extension

— It’s also safe to assume the extension is 3 bytes in length

— Looking at the string we see that the first character is in the 0x60
range and the rest are in the 0x40 range followed by a character
in the 0x10 range. Since we know that alphabetic characters are
stored together we can assume the 0x10 is a directory delimiter
(0x5C "\" or 0x2F /7). Also, it’s likely the directory starts with a
capital letter.

— Additionally, we see that the 4th last character is in the 0x60
range and is likely a dot (0x2E)

13

— Let’s try using XOR. We know what some original characters
might be so let’s try finding the seed for each specific XOR
operation. Using the first entry
63 4C 48 4C 43 42 1C 50 5B 5C 58 49 4D 2E 6D 2C 29 20

* backslash (0x5C): 0x5C XOR 0x1C = 0x40
x dot (0x2E): 0x2E XOR 0x6D = 0x43
« forward slash (0x2F): 0x2F XOR 0x1C = 0x33

— Now let’s look at the differences for the seeds. We know that the
dot is 8 characters away from the directory delimiter. Looking at
the differences:

* dot - backslash = 0x43 - 0x40 = 0x03
% dot - forwardslash = 0x43 - 0x33 = 0x10

— 0x10 is 16 which is 2x the number of characters between the

delimiter and the dot. Let’s try adding 2 to the seed for every

subsequent XOR we do. Starting from the forwards slash we use
0x33 as our XOR seed and then add 2 to it each time:

.P\XIM.m,) = /electro.ini

— Now we can go backwards from the slash and do the rest of the
string (subracting 2 for each seed):

cLHLCB.P[\XIM.m,) = Decals/electro.ini

— The seed used for the first letter of the string is 0x27 (39)

— Repeating the above process for the other two strings we get:

IOOO\A.[WVSJ/4j/&# = Decals/molotov.ini
IJRRYD.IR*&1/&'(aB=< = Decals/rockethole.ini

— The second string is seeded with 0x28 (40) and the third with
0x2D (45)

14

— Let’s also compare the size of the strings. In order the sizes are:
0x12 (18), 0x12 (18), 0x15 (21)

— If we assume the encryption method uses the string size to encrypt,
we can observe that while the first and second strings are the same
length, their seed has a difference of 1.

— Perhaps the seed calculation takes into account the index of the
file. This would account for the difference between the first and
second strings. But it doesn’t work for the third.

— We can also observe that doing a shift left on the string length
gets us close to the seed value:

* 0x12 (18) < 1 = 0x24 (36)
* 0x12 (18) < 1 = 0x24 (36)
x 0x15 (21) < 1 = 0x2A (42)
— At this point we need more information. If we apply the above to

more strings in the archive we see that:
shift left(size) - seed value = {-3, -2, -1, 0, 1}

— This range is not very symmetric. If we consider a different shift
left (inclusive shift left), we could make the range symmetric.
Inclusive shift left sets the rightmost bit after the shift making
the result be (size * 2 + 1).

— But how does it know what values to use when decrypting? We
need more data. Make a table! Doing so we will find that the
length gives an index into the repeating set {-2, -1, 0, 1, 2}. A
size of 0 would return -2. A size of 3 would return 0. A size of 5
would return -2 again. And so on.

— The final encryption for the strings would be:
s (shift left (0x12) + 1) + 1 (from file index) + 1 (code in set
using size as an index into your table) = 0x27

* (shift left (0x12) + 1) + 2 (from file index) + 1 (code in set
using size as an index into your table) = 0x28

 (shift left (0x15) + 1) + 3 (from file index) + -1 (code in set
using size as an index into your table) = 0x2D

e When trying to find the decryption algorithm there is a lot of guessing
and second-guessing. Keep trying things and work until you solve it!

15

Compression

Many different compression algorithms

ZLib is common as it’s open source and there are no licensing deals
needed

— Identified by the lowercase 'x’ as the first byte

Some decompression algorithms require the decompressed file size to
work

PKZip is another common compression algorithm

— Some archives reimplement the algorithm and put them into their
own file format

You either need a good strategy or an in depth investigation

You can always disassemble the game and reverse engineer the decom-
pression algorithm

— Along the same vein, you can also investigate method names
or libraries that are included. If you see something called
LZHUncompress(), or if you find an error string saying "RAR:
Error in CRC”, you can pinpoint the algorithm that way.

These days, the best way is probably to brute force a bunch of
compression algorithms using the QuickBMS brute force script and
then finding files that make sense after decompression.

16

ASCII

1. Standard
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0O 00 Nul 32 20 Space 64 40 @ 96 60 °

1 01 Start of heading 33 21 ! 65 41 A 97 61 a

Z DZ Startoftext 34 2z " 66 4Z B 98 62 b

3 03 Endoftext 35 23 # 67 43 C 99 63 c

4 04 Endoftransmit 36 24 3§ 68 44 D 100 64 d

5 05 Enguiry 37 25 3% 69 45 E 101 65 e

6 06 Acknowledge 38 26 & 70 46 F 102 66 f£

707 Audible bel 39 27 ! 71 47 G 103 67 g

8 08 Backspace 40 28 72 48 H 104 &8 h

9 09 Horizontaltab 41 29) 73 49 I 105 69 i
10 0A Line feed 42 2A * 74 4A J 106 6A j
11 0B Vericaltab 43 2B + 75 4B K 107 6B k
12 0C Form feed 44 EEETEE | 76 4C L 108 &C 1
13 0D Carriage return 45 2D - 7?7 4D M 109 6D m
14 O0E Shift out 46 2E . 78 4E N 110 6E n
15 OF Shiftin 477 IR / 7S BT O 111 &F o
16 10 Datalink escape 43 30 O 80 50 P 112 70 p
17 11 Device control 1 49 31 1 81 51 ¢ 113 71 g
18 12 Device contral 2 50 32 2 82 52 R 114 72 «r
19 13 Device control 3 51 33 3 83 53 S 115 73 s
20 14 Device control 4 52 34 4 g4 54 T 116 74 ¢
21 15 Neg.acknowledge 53 35 5§ 85 55 U 117 75 u
22 16 Synchronous idie B4 36 6 g6 56 V 118 76 w
23 17 Endtrans. block 55 . 7 g7 57 W 119 77 w
24 18 Cancel 56 38 8 g8 58 X 120 78 x
25 19 End of medium 57 39 9 89 59 Y 121 79 vy
26 1A Substitution 58 3A 90 5A Z 122 TA =z
27 1B Escape S9E3H 91 5B [123 7B |
28 1C File separator 60 3C < 92 5C % 124 7C |
29 1D Group separstor 61 3D = 93 5D] 125 7D 1}
30 1E Record separator 62 3E > 94 5E * 126 7E ~
31 1F Unit separator 63 3F 2?2 95 5F 127 7F O

17

2. Extended

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
128 80 ¢ 160 AD & 192 co L 224 EO0O o
129 81 161 a1 i 193 c1 L1 225 E1 &
130 82 é 162 A2 6 194 Cz2 226 E2 T
131 83 A& 163 A3 1 195 cC3 | 227 E3 n
132 84 & 164 a4 # 196 C4 -— 228 E4 %
133 85 a 165 AS W 197 €5 + 229 E5 o
134 86 & 166 A6 = 195 C6 F 230 E6 n
135 87 ¢ 167 A7 ° 198 c7 | 231 E7 1
136 88 & 168 A8 ¢ zoo cs L 232 E8 @
137 89 & 169 201 C9 f 233 E9 @&
138 8A & 170 20z ca & 234 EA Q
139 8B 1 171 203 CB 235 EB &
140 8C i 172 204 cc |k 236 EC =
141 8D i 173 205 CDp = 237 ED @
14z 8E A 174 206 CE £ 238 EE =«
143 8F & 175 z07 CF < 239 EF N
144 90 E 176 208 Dpo L 240 FO =
145 91 = 177 209 D1 241 F1 +
146 92 E 178 210 Dz 242 Fz 2
147 93 4§ 179 B3 | z11 p3 L 243 F3 <
148 94 & 180 B4 21z D4 k 244 F4 |
149 95 @ 181 B5 4 213 D5 245 F5 |
150 96 0 182 B6 | 214 D6 246 F6 =
151 97 u 183 B7 4 215 b7 247 F7 =
152 98 ¥ 184 B8 4 216 DB £+ 248 F& "
153 99 O 185 B9 4 z17 D9 249 F9 =
154 94 U 166 Ba | 218 DA r 250 Fa
155 9B 187 BB 3 212 DB 251 FB ¥
156 9C &£ 168 BC 4 220 DC g 252 FC =
157 9D ¥ 189 BD 1 zz1 pp | 253 FD =
158 9E R 180 BE A zzz DE | 254 FE ®
159 EREEN ¥ 191 EBF 4 223 por W 255 BN 0

18

